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ABSTRACT

For the purpose of producing datasets for regional-scale climate change research and application, the
NCEP–NCAR reanalysis for the period 1948–2005 was dynamically downscaled to hourly, 10-km resolution
over California using the Regional Spectral Model.

This is Part I of a two-part paper, describing the details of the downscaling system and comparing the
downscaled analysis [California Reanalysis Downscaling at 10 km (CaRD10)] against observation and
global analysis. An extensive validation of the downscaled analysis was performed using station observa-
tions, Higgins gridded precipitation analysis, and Precipitation-Elevation Regression on Independent
Slopes Model (PRISM) precipitation analysis.

In general, the CaRD10 near-surface wind and temperature fit better to regional-scale station observa-
tions than the NCEP–NCAR reanalysis used to force the regional model, supporting the premise that the
regional downscaling is a viable method to attain regional detail from large-scale analysis. This advantage
of CaRD10 was found on all time scales, ranging from hourly to decadal scales (i.e., from diurnal variation
to multidecadal trend).

Dynamically downscaled analysis provides ways to study various regional climate phenomena of different
time scales because all produced variables are dynamically, physically, and hydrologically consistent. How-
ever, the CaRD10 is not free from problems. It suffers from positive bias in precipitation for heavy
precipitation events. The CaRD10 is inaccurate near the lateral boundary where regional detail is damped
by the lateral boundary relaxation. It is important to understand these limitations before the downscaled
analysis is used for research.

1. Introduction

Climate research, particularly application studies for
water, agriculture, forestry, fishery, and energy man-
agement, requires finescale multidecadal information
of meteorological, oceanographic, and land states. Un-
fortunately, spatially and temporally homogeneous
multidecadal observations of these variables in high
horizontal resolution are nonexistent. Some long-term
surface records of temperature and precipitation exist,
but the number of observations is very limited and the
measurements are often contaminated by changes in
instrumentation over time. Some climatologically im-
portant variables, such as soil moisture, surface evapo-
ration, and radiation, are not even measured over most
of the continental United States.

Reanalysis is one approach to obtaining long-term
homogeneous analysis of needed variables. Unfortu-
nately, the horizontal resolution of global reanalysis is
on the order of 100–200 km, too coarse for many ap-
plication studies. Recently, regional reanalysis over
North America was conducted [North American Re-
gional Reanalysis (NARR); Mesinger et al. 2006). The
horizontal resolution of 32 km and the duration of 25 yr
used in that study are still not completely satisfactory
for application requirements, but the product is defi-
nitely valuable. We can expect to see exciting results
soon from studies using NARR.

In this paper, we present another attempt to produce
even higher-resolution regional “reanalysis” over a
longer period for the state of California using a dynami-
cal downscaling technique [California Reanalysis
Downscaling at 10 km (CaRD10)]. This method is
based on the concept that small-scale detail can be at-
tained by laterally forcing the high-resolution regional
model with large-scale analysis. The major assumption
made in this process is that the small-scale features are
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purely forced by large scale, and the small scale never
feeds back to the large scale. This assumption holds
well when the large-scale forcing is strong (e.g., during
winter and transient seasons) but may fail when the
forcing is weak (e.g., during summer).

The essential difference between the dynamical
downscaling method and data assimilation, which is
used in NARR and in all the global reanalyses, is that
the former does not utilize station observations to cor-
rect model forecast error. In this context, the dynamical
downscaling can be referred to as “regional data assimi-
lation without observation” (von Storch et al. 2000). As
described later, dynamical downscaling can be im-
proved by forcing the large-scale part of the field within
the regional domain. This process reduces the forecast
error of the “large scale” part of the regional model,
particularly when the domain is large. With this correc-
tion of large scale, the dynamical downscaling can be
better termed “regional data assimilation without re-
gional scale observation,” since the regional model
knows the large-scale observation indirectly through
the global reanalysis.

The major objective of Part I of this two-part paper is
to demonstrate that the dynamical downscaling is ca-
pable of reproducing small-scale detail that agrees bet-
ter with station observations than the coarse-resolution
analysis, without injecting small-scale observation. In
other words, the dynamical downscaling can serve as a
regionalization of coarse-resolution data assimilation
analysis without conducting expensive high-resolution
data assimilation.

In Kanamaru and Kanamitsu (2007b, hereafter Part
II) we describe a detailed comparison of the down-
scaled analysis with NARR. In this part of the study, we
aim at understanding the efficacy of regional downscal-
ing for small-scale analysis and the importance of high
horizontal resolution. We also demonstrate the implied
uncertainties in regional analyses.

This paper is organized as follows. In section 2, the
model and downscaling procedures are discussed. In
section 3, validation of the analysis based on station
observation is presented. Section 4 compares the
CaRD10 precipitation with gridded precipitation analy-
sis, namely, Higgins analysis and Precipitation-
Elevation Regression Independent Slopes Model
(PRISM) data, and section 5 concludes the paper.

2. Model and dynamical downscaling procedure

a. The Regional Spectral Model

The Regional Spectral Model (RSM; Juang and
Kanamitsu 1994) is used in this study. The model origi-
nates from the one used at the National Centers for

Environmental Prediction (NCEP), but the code was
updated with greater flexibility and much higher effi-
ciency (Kanamitsu et al. 2005) at the Scripps Institution
of Oceanography. The RSM utilizes a spectral method
(with sine and cosine series) in two dimensions. A
unique aspect of the model is that the spectral decom-
position is applied to the difference between the full
field and the time-evolving background global analysis
field. The model integration procedure mimics the pre-
diction of perturbations, but it is not the perturbation
prediction equation that is integrated in time. The pro-
cedure would probably be better named as optimum
spectral perturbation filtering method, in which full field
minus base field, both of which are defined within the
domain, is used to apply the sine and cosine filter.

The model is based on the primitive equation system
and it consists of momentum equation, thermodynamic
equation, mass conservation equation, and moisture
equation. The primitive equation system is based on an
approximation that the horizontal scale is much larger
than the vertical scale. This approximation places a
limit to the use of horizontal resolution depending on
the vertical scale of the phenomena. The regional-scale
phenomena, such as sea breeze, mountain-valley
breeze, and many of the flow regimes appearing along
the coast of California are confined within the marine
boundary layer and have the vertical scale of 1–3 km.
Therefore, the horizontal grid size of the quasi-
hydrostatic equation model can be as small as 5–10 km.
On the contrary, the deep convective system that ap-
pears in the summertime over the Midwest has a ver-
tical scale of more than 10 km and therefore, a hori-
zontal resolution of 30 km or larger is preferred. For the
downscaling performed in this study, a horizontal reso-
lution of approximately 10 km is used. The use of this
rather high resolution is based on the dominance of
relatively small vertical-scale phenomena in California.
The choice is also based on the more practical desire to
resolve complex topography in California as much as
possible for the purposes of water management appli-
cation.

The only difference in the dynamical core used in this
study from the original RSM is the application of a
process splitting time scheme (Williamson 2002), in
which physical processes are computed in parallel with
the dynamical forcing terms, as opposed to computing
them in a serial manner. This scheme saves consider-
able computational time for parallel computing since it
reduces the communication between the processors, by
as much as a factor of 2. Other details of the parallel-
ization and optimization of the model are described in
Kanamitsu et al. (2005).

The physical processes included in the model are listed
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in Table 1. The physical parameterization schemes used
in RSM are fully tested in its global model counter-
part—the Global Spectral Model—with ensemble At-
mospheric Model Intercomparison Project (AMIP)-
type runs. The skill of the simulation is reasonable and
comparable to many other global models (Robertson et
al. 2004). For the application of the schemes to high-
resolution regional downscaling by RSM, no explicit
changes of the physical processes are applied except the
horizontal diffusion.

Among these physical processes, particular mention
will be given to the Oregon State University Land
Scheme (Pan and Mahrt 1987) and the radiation. The
land scheme consists of two soil layers, 10 and 190 cm
thick, where soil moisture and soil temperature are pre-
dicted. Evaporation from the land surface is divided
into two parts: direct evaporation and transpiration.
The formula of Chen and Dudhia (2001a,b) is used for
direct evaporation (Kanamitsu and Mo 2003). The
snow model is a simple one-layer energy balance
model. Specifications of the land surface characteristics
are described in section 2d. Other details of the scheme
are described in Chen et al. (1996). The vegetation
type, vegetation fraction, and soil type are fixed clima-
tology and do not evolve during the 57 yr of downscal-
ing.

Both short- and longwave radiation schemes are
taken from M.-D. Chou (Chou and Suarez 1994; Chou
and Lee 1996). Cloudiness is computed from relative
humidity and vertical motion, as well as from marine
boundary layer depth and intensity (Slingo 1987).
These clouds interact with the radiation scheme.

As will be mentioned later in section 2c, area average
temperature and moisture in the regional domain are
nudged to those of the reanalysis by the scale-selective
bias correction (SSBC) scheme (Kanamaru and Kana-

mitsu 2007a). Therefore, the effects of CO2 and aerosol
on the downscaled analysis of large-scale free atmo-
sphere will be minimal. However, the surface fluxes will
certainly be affected by CO2 and aerosol. These atmo-
spheric compositions impact land states such as soil
moisture and snow through the change in radiation flux
reaching the ground. In CaRD10, the CO2 concentra-
tion is fixed at 348 ppm throughout the 57 yr of inte-
gration. The aerosol is also fixed at the seasonal clima-
tological value by Koepke et al. (1997). This is one of
several simplifications made in this downscaling and
caution needs to be exercised when the downscaled
products are used for diagnostics and application.

b. Model domain and topography

The model domain is shown in Fig. 1. The Mercator
projection true at 60°N is used in this study. The do-
main covers the area 29.466°–45.719°N, 128.203°–
111.563°W. The model surface elevation is also shown
in Fig. 1. This domain is selected to focus on the state of
California and the neighboring states, but it also incor-
porates requests from the ocean research community.
Note that the major limiting factor of the domain size is
computer resource availability. It should also be noted
that the lateral boundary nudging zone extends to ap-
proximately 20–25 grid points from the boundary, re-
ducing the useable domain. These limitations will be
remedied in the simulations with exactly the same
downscaling system over the contiguous United States,
currently in progress in collaboration with the Earth
Simulator Center in Japan.

c. Scale-selective bias correction (SSBC)

The accuracy of the dynamically downscaled analysis
depends on two factors: the assumption of one-way in-

TABLE 1. Physics of the RSM.

Parameterization Reference

Convection Relaxed Arakawa–Schubert Moorthi and Suarez (1992)
Large-scale condensation Evaporation of rain included
Shallow convection Tiedtke scheme Tiedtke (1983)
Boundary layer Nonlocal scheme Hong and Pan (1996)
Surface layer Monin–Obukhov
Longwave radiation M.-D. Chou Chou and Suarez (1994)
Shortwave radiation M.-D. Chou Chou and Lee (1996)
Cloud Slingo Slingo (1987)
Gravity wave drag Pierrehumbert Alpert et al. (1988)
Vertical diffusion Richardson number dependent
Land model Oregon State University (OSU) Pan and Mahrt (1987)
Land characteristics USGS
Direct evaporation NCAR Chen et al. (1996)
Topography Smoothed mean from USGS GTOPO30
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teraction and the accuracy of the regional model itself.
The former is a fundamental assumption in dynamical
downscaling, which sets the theoretical limit to the
methodology. The latter factor consists of inaccuracies
due to numerics (accuracy of the discretization method,
and the treatment of the time-evolving lateral boundary
conditions) and inaccuracies of the physical processes.
These inaccuracies can be reduced in principle by im-
proving each component, but this requires diligent and
continuous efforts, as seen from the fact that many op-
erational numerical forecast centers are spending most
of their resources on this sole purpose.

Kanamaru and Kanamitsu (2007a) showed that the
growth of large-scale error spanning the regional do-
main has been the major cause of inaccuracies in the
dynamical downscaling procedure using RSM, and the
SSBC scheme can reduce this error. The scheme con-
sists of three components: 1) nudging of the large-scale
part of the wind perturbation toward zero, 2) removing
the area average perturbation of temperature and mois-

ture at every model level, and 3) adjusting the area
mean perturbation logarithm of surface pressure to the
corresponding difference of logarithm of surface pres-
sure due to the area mean difference in the global and
regional topography. The combination of these proce-
dures reduces the large-scale error and improves the
simulation of precipitation, makes the downscaling in-
sensitive to the model domain, and allows the use of
much weaker lateral boundary relaxation in RSM. We
apply this method to reduce the error greater than 1000
km. This cutoff scale (for the first component of SSBC)
is based on the average distance of radiosonde obser-
vations in the United States (approximately 250 km;
Archer and Jacobson 2003) and the resolution of the
NCEP–National Center for Atmospheric Research
(NCAR) reanalysis, which is about 200 km. In
CaRD10, however, SSBC is mostly effective on the
area average and the largest scale because the domain
is about the size of 1600 km � 2000 km. Here, the
largest scale implies a wave with one positive and one

FIG. 1. CaRD10 domain, surface elevation (m), and observation station locations used in CaRD10
validation. Buoy observation stations are indicated by blue circles (names begin with “b”; courtesy of S.
Taylor). The USHCN stations are indicated by black squares (names begin with “c,” “v,” or “m”) and
the NCDC stations are indicated by red “cross hairs” (three-letter abbreviations).
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negative peak and a node at the center in both x and y
directions.

d. Lateral forcing, SST, and land characteristics

The lateral forcing is taken from the NCEP–NCAR
global reanalysis, hereafter referred to as NNR (Kalnay
et al. 1996), which is the only reanalysis that goes back
to the late 1940s. The 200-km-resolution global reanaly-
sis is directly downscaled to 10 km in this study. This
large downscaling ratio by RSM, about 20, did not
cause any appreciable problem in the regional domain
away from the lateral boundary relaxation zones, as
found out also by Juang and Hong (2001). The 6-hourly
reanalysis at model sigma levels is used to force the
regional model. The RSM model levels are chosen to
match the reanalysis model levels, such that vertical
interpolation is avoided. The tendency of the global
field is assumed to be constant during the 6 h.

The 40-yr European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis Sea Surface
Temperature is used in the downscaling. This SST
(Fiorino 2004) is a combination of the SST analyses
from the Hadley Centre monthly mean Global Sea Ice
Coverage and Sea Surface Temperature [(HadISST),
prior to and including 1981], and NCEP [weekly NCEP
two-dimensional variational data assimilation (2DVAR)
SST, after 1982 inclusive], cleaned up at the ice edges
and interpolated to daily analysis using the mean con-
serving interpolation scheme (Taylor et al. 2000). We
selected this SST primarily because it has been thor-
oughly checked through use in several reanalyses, and
the data were readily available.

Land characteristics, namely, vegetation types, veg-
etation fraction, and soil types, are taken from the U.S.
Geological Survey (USGS) compilation. The original
10-min-resolution data were resampled to 30-min reso-
lution to reduce the data volume size and were then
utilized in the downscaling. The Oregon State Univer-
sity Land Model used in this study recognizes 12 types
of vegetation as well as 16 types of soil. For the veg-
etation fraction, seasonally varying climatology is used
(thus, no long-term change in land characteristics is in-
corporated).

Soil moisture and soil temperature are predicted by
the model during the nesting period of 6 h. These pre-
dicted values are carried to the next nesting period;
thus, they evolve with time during the entire period of
downscaling and interact with near-surface atmo-
sphere. No attempt to prevent the land state from drift-
ing to its own climatology was made. No apparent drift
was observed during the 57 yr of downscaling.

The topography is taken from USGS Global 30 Arc
Second Elevation Data (GTOPO30) and interpolated

directly to the model grid. The variance of topography
used in the gravity wave drag parameterization (Alpert
et al. 1988) is computed as a variance of 30-min topog-
raphy within the regional model grid of 10 km.

e. Integration procedure

The downscaling is performed in three streams:
1948–69, 1968–89, and 1988–2005. The initial condition
of the atmosphere and land is taken from the global
reanalysis at 0000 UTC 1 January 1948, linearly inter-
polated to the regional model grid. To avoid the spinup
of soil moisture, the three streams overlap over 2-yr
periods, 1968–69 and 1988–89. The discontinuity in soil
moisture after the 2-yr overlap becomes very small.

3. Validation of the downscaled analysis against
station observations

We demonstrate that the downscaled analysis fits
better to the observation than the coarse-resolution
global analysis, particularly to near-surface observation
in a regional scale. Since the accuracy of the down-
scaled analysis is expected to vary with the time scale,
we performed the validation against surface observa-
tions by separating the time scale to hourly, daily,
monthly, and decadal, including long-term trend. The
station observation locations used for validation are
plotted in Fig. 1 and listed in Table 2. There are three
types of station observations—15 hourly buoy observa-
tions (courtesy of S. Taylor; station names start with
“b”), stations from the U.S. Historical Climatology
Network (USHCN; see online at http://cdiac.ornl.gov/
epubs/ndp/ushcn/newushcn.html) for monthly and daily
means (3 coast locations: “c,” 6 valley locations: “v,”
and 2 mountain locations: “m”), and 12 daily airport
station observations from the National Climatic Data
Center (NCDC; 3-letter abbreviations). For daily and
hourly scale validations we focus on the years 2000 and
2001. The results may differ for other years, but general
conclusions will not change.

a. Daily scale

1) WIND OVER COASTAL OCEAN

The normalized wind vector anomaly correlation
(Breaker et al. 1994) and vector root-mean-square er-
ror (RMSE) of two daily analyses, CaRD10 and NNR,
against fifteen buoy observations (Table 2a and Fig. 1)
during January and August 2000 are computed (Table
3). This validation is of particular interest since the ef-
fect of local geography on coastal ocean wind is prob-
ably much simpler than that over land. The locations of
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the buoys used in this comparison are shown as station
names starting with “b” in Fig. 1. Table 3 clearly shows
that for most stations, CaRD10 has higher correlation
and lower RMSE than NNR. A statistical test shows
that the CaRD10 correlation may not be significantly
better than NNR at some stations, but systematic im-
provements in most stations suggest that the superiority
of CaRD10 over NNR is real. The improvement is very
large for buoy b25, which is located to the south of
Point Conception, an area characterized by weaker
winds with more temporal and spatial variability. This
location is also known as the place where the Catalina
eddy forms (more details in section 3c and Part II). The
average vector correlation and RMSE for all the buoys
compared here are shown in the bottom row of Table 3.
Compared to NNR, the improvement of the RMSE in
the downscaling is impressive. As we discuss in section
3d, caution should be exercised when simply comparing
the area-averaged skills because of the difference in
spatial sampling between coarse- and fine-resolution
analyses.

2) WIND OVER LAND

We performed similar comparisons on wind over
land using 12 airport stations (Table 4). The station
locations are shown as red cross-hair marks in Fig. 1
and are listed in Table 2c. Overall, the fit of the two
analyses to the land stations is much worse than that
over ocean. This is expected since the more complex
surface topography on land produces a stronger influ-
ence on winds. The differences in fit between the two
analyses are more diverse, but five stations of CaRD10
in each month show statistically significant improve-
ments of at least one of the scalar correlations (u and �
winds and wind speed) over NNR. The average corre-
lation and RMSE for all the stations are shown in the
bottom row of Table 4. CaRD10 seems to be consis-
tently better than NNR, both in terms of correlation
and RMSE, due to the detailed 10-km-resolution to-
pography.

3) NEAR-SURFACE TEMPERATURE OVER LAND

Table 5 compares the average of correlation, RMSE,
and bias of daily mean and maximum/minimum tem-
perature at 12 land stations in California for January
and August 2000 (same stations as those used for the
wind verification over land). For the daily mean tem-
perature, the CaRD10 result is about the same as NNR
during January and slightly better in August. In terms
of mean bias–removed RMSE, the CaRD10 is better in
January and about the same in August.

TABLE 2. Buoy station locations.

a. Buoy station locations

WMO
ID Sign Location Lat Lon

46011 b11 Santa Maria 34.88°N 120.87°W
46012 b12 Half Moon Bay 37.36°N 122.88°W
46013 b13 Bodega Bay 38.23°N 123.32°W
46014 b14 Pt. Arena 39.22°N 123.97°W
46022 b22 Eel River 40.78°N 124.54°W
46023 b23 Pt. Arguello 34.71°N 120.97°W
46025 b25 Santa Monica basin 33.75°N 119.08°W
46026 b26 San Francisco 37.75°N 122.82°W
46028 b28 Cape San Martin 35.74°N 121.89°W
46042 b42 Monterey 36.75°N 122.42°W
46047 b47 Tanner Banks 32.43°N 119.53°W
46053 b53 Santa Barbara E 34.24°N 119.85°W
46054 b54 Santa Barbara W 34.27°N 120.45°W
46062 b62 Pt. San Luis 35.10°N 121.01°W
46063 b63 Pt. Conception 34.27°N 120.66 °W

b. Stations for monthly analysis (data obtained from USHCN)

Cooperative
Observer
Program
(COOP)

ID Sign Location Lat Lon

042910 c1 Eureka Weather
Service Office
(WSO)

40.80°N 124.17°W

047916 c2 Santa Cruz 36.98°N 122.02°W
046175 c3 Newport Beach harbor 33.60°N 117.88°W
046506 v1 Orland 39.75°N 122.20°W
045385 v2 Marysville 39.15°N 121.60°W
042294 v3 Davis Experimental

Farm
38.53°N 121.77°W

043257 v4 Fresno WSO Airport
(AR)

36.78°N 119.72°W

043747 v5 Hanford 36.30°N 119.65°W
049452 v6 Wasco 35.60°N 119.33°W
044713 m1 Lake Spaulding 39.32°N 120.63°W
048758 m2 Tahoe City 39.17°N 120.13°W

c. Airport stations for daily analysis (data obtained from
NCDC)

COOP
ID Sign Location Lat Lon

040442 BFL Bakersfield 35.43°N 119.05°W
040822 BIH Bishop 37.37°N 118.35°W
045115 CQT University of

Southern California
(Los Angeles)

34.02°N 118.28°W

043257 FAT Fresno 36.77°N 119.72°W
045114 LAX Los Angeles 33.93°N 118.40°W
045085 LGB Long Beach 33.82°N 118.15°W
047304 RDD Redding 40.50°N 122.30°W
047630 SAC Sacramento 38.50°N 121.48°W
047740 SAN San Diego 32.73°N 117.17°W
048558 SCK Stockton 37.88°N 121.23°W
047769 SFO San Francisco 37.62°N 122.38°W
047946 SMX Santa Maria 34.90°N 120.45°W
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For maximum/minimum temperature, the CaRD10
correlation is about the same as NNR, and the RMSE
of CaRD10 is less than that of NNR with the exception
of daily maximum temperature in August. The
CaRD10 temperature correlations with observations
range from 0.5 to over 0.9 for individual stations but
some of them are not statistically significant and no
clear increase in correlation is found in CaRD10 over
NNR. Overall, the improvement of CaRD10 over NNR
is not very large.

For the station elevation–corrected mean bias, the
CaRD10 has a smaller bias than NNR in daily mean
and maximum temperatures possibly due to the supe-
rior representation of surface characteristics in CaRD10.

The sign of daily mean temperature bias tends to vary
between CaRD10 and NNR between January and Au-
gust without much consistency. The most notable sys-
tematic bias that appeared in both CaRD10 and NNR is
the positive bias in minimum temperature in January
that reduces the daily temperature range.

The daily temperature ranges in summer and winter
are compared with a large number of land stations in
1996 and are shown in Fig. 2 (the National Weather
Service Cooperative Observer Program observations
were provided courtesy of M. Tyree). The geographical
patterns look fairly reasonable for both January and
July, but CaRD10 tends to underestimate the tempera-
ture range, particularly in January.

TABLE 4. Same as in Table 3, but for 12 land station observations.

January August

Correlation RMSE (m s�1) Correlation RMSE (m s�1)

CaRD10 NNR CaRD10 NNR CaRD10 NNR CaRD10 NNR

BFL 0.43 0.36 2.33 2.85 0.53 0.26 1.59 2.03
BIH 0.49 0.47 3.45 4.12 0.43 0.36 4.00 4.41
CQT 0.44 0.44 2.29 3.25 0.28 0.16 0.96 1.45
FAT 0.59 0.47 2.94 3.63 0.41 0.31 1.72 1.96
LAX 0.54 0.44 2.81 3.58 0.41 0.39 1.62 2.28
LGB 0.58 0.36 2.63 4.07 0.38 0.27 2.35 2.81
RDD 0.57 0.64 4.18 5.35 0.52 0.37 1.52 1.87
SAC 0.64 0.49 3.52 4.41 0.56 0.61 2.34 2.55
SAN 0.41 0.52 2.94 2.87 0.47 0.44 2.68 2.93
SCK 0.60 0.48 3.73 4.44 0.55 0.57 2.39 3.23
SFO 0.78 0.62 4.12 4.25 0.56 0.56 4.53 4.62
SMX 0.63 0.57 4.01 4.02 0.48 0.42 1.74 1.28

All-station average 0.56 0.49 3.24 3.90 0.46 0.39 2.29 2.62

TABLE 3. Vector anomaly correlation and RMSE of winds of two analyses and 15 buoy observations during 2000. All vector
correlations in the table are significant at the 95% level from bootstrap tests. When at least one of the scalar correlations (u, � winds,
and wind speed) is different from its counterpart at the 95% significance level, the better correlation is indicated in bold.

January August

Correlation RMSE (m s�1) Correlation RMSE (m s�1)

CaRD10 NNR CaRD10 NNR CaRD10 NNR CaRD10 NNR

b11 N/A N/A N/A N/A 0.65 0.66 1.48 2.25
b12 N/A N/A N/A N/A 0.68 0.62 1.98 2.54
b13 0.94 0.88 2.70 3.59 0.72 0.74 2.20 4.28
b14 0.89 0.82 2.69 3.15 0.78 0.69 1.88 2.50
b22 0.91 0.85 3.17 3.82 0.64 0.65 2.39 2.26
b23 0.73 0.78 3.89 3.56 0.69 0.64 1.73 2.11
b25 0.77 0.61 2.77 4.15 0.58 0.46 1.27 2.12
b26 0.92 0.86 2.48 3.07 0.83 0.68 1.36 2.50
b28 N/A N/A N/A N/A 0.73 0.69 2.21 3.36
b42 0.88 0.78 3.16 4.03 0.69 0.65 1.88 3.13
b47 0.93 0.92 2.72 2.65 0.78 0.77 1.40 1.48
b53 0.69 0.61 2.52 3.84 0.54 0.55 2.35 2.58
b54 0.66 0.65 3.57 4.17 0.67 0.73 2.03 2.23
b62 0.85 0.84 2.71 2.36 0.68 0.64 1.61 1.98
b63 0.69 0.66 2.91 3.60 N/A N/A N/A N/A

All-station average 0.82 0.77 2.94 3.50 0.69 0.66 1.84 2.52
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b. Hourly scale

We compared the CaRD10 wind speeds with buoy
observations on an hourly scale by compositing the
monthly diurnal variation from 2 yr (2000–01) of data.
We show the comparison at station b25, which is lo-
cated to the south of Point Conception, where the
winds tend to be more variable than at other buoys
(Fig. 3). We see that the agreement of the CaRD10
diurnal cycle with observation is reasonably good, but
CaRD10 shows larger diurnal amplitude. Similar agree-
ment of diurnal cycle between CaRD10 and observa-
tions is found at other stations, but the amplitude dif-
ference varies significantly among stations.

Another example of the composite of the diurnal
variation of winds is shown in Fig. 4. This is the one-
month CaRD10 wind time–height composite compared
with the observed composite taken from the special
observation at Piedras Blancas (Ralph et al. 2000; this
particular figure is provided courtesy of P. Neiman).
The observation is based on the hourly wind profiling
radar deployed by the National Oceanic and Atmo-
spheric Administration (NOAA). The timing of the di-
urnal variation of low-level wind speed is very well rep-
resented by CaRD10, although the variability tends to
be lower (6.5 m s�1 in observation versus 4.5 m s�1 in
CaRD10). The variation of CaRD10 wind direction is
fairly reasonable at around 1000 m above ground but
tends to be too large near the surface.

Overall, diurnal variation is fairly reasonably repro-
duced by the downscaling, although the evaluation of
the accuracy may require further study.

c. Synoptic examples

Comparison of the dynamically downscaled analysis
with station observation in terms of correlation, RMSE,
and bias is not sufficient to demonstrate the meteoro-
logical quality of the downscaled analysis. The integrity
of CaRD10 can be more clearly demonstrated by show-
ing examples of synoptic events. Here, we present one
typical mesoscale example of the Catalina eddy.

The Catalina eddy is well documented by Wakimoto
(1987) and Mass and Albright (1989). We took a typical
case from Mass and Albright (their Fig. 2a) and exam-
ined the surface wind field from CaRD10. As shown in
Fig. 5, the dynamically downscaled analysis detects the
eddy at a reasonable location, demonstrating the capa-
bility of the dynamical downscaling. Two discontinuity-
like features in wind direction, one starting at Point
Conception and the other extending from the south-
central region of the eddy toward the west-southwest
direction, are undocumented and worth further study.

We also examined coastally trapped wind reversal
(CTWR) and Santa Ana events (see Part II for more
detail) and found that the CaRD10 performs excel-
lently in reproducing mesoscale features and its time
evolutions. Although these are limited examples, it is
clear that dynamical downscaling is capable of repro-
ducing synoptically consistent small-scale details over
ocean and land.

d. Monthly averages

The validation of monthly average daily mean and
maximum temperature and precipitation over land was

TABLE 5. Mean correlation, RMSE, and bias of daily mean temperature and max/min temperature of two analyses and 12 land station
observations during 2000. For the RMSE, the mean value is subtracted at each station. For the mean bias, temperature is corrected for
elevation with a lapse rate of 6.5 K km�1 and absolute values of bias at each station are averaged. See notes for statistical significance
of correlations at the 95% confidence level.

Correlation RMSE (K) Bias (K)

CaRD10 NNR CaRD10 NNR CaRD10 NNR

Mean T Januarya 0.77 0.77 1.66 1.73 0.52 0.81
Augustb 0.71 0.67 1.73 1.74 1.51 2.59

Tmax Januaryc 0.47 0.45 2.37 2.47 0.50 2.18
Augustd 0.75 0.75 2.45 2.35 2.48 4.72

Tmin Januarye 0.75 0.77 2.47 2.53 2.38 1.98
Augustf 0.49 0.40 2.17 2.25 2.19 1.60

a Correlations at 2 stations are significantly better in CaRD10 than NNR, and at 1 station they are better in NNR than CaRD10.
b Correlations at 2 stations in CaRD10 and 1 station in NNR are not significant. Correlations at 2 stations are significantly better in

CaRD10 than NNR.
c Correlations at 4 stations each in CaRD10 and NNR are not significant. Correlations at 2 stations are significantly better in CaRD10

than NNR and at 1 station they are better in NNR than CaRD10.
d Correlations at 2 stations are significantly better in CaRD10 than NNR, and at 2 stations they are better in NNR than CaRD10.
e Correlations at 2 stations are significantly better in NNR than CaRD10.
f Correlations at 2 stations in CaRD10 and at 4 stations in NNR are not significant. Correlation at 1 station is significantly better in
CaRD10 than NNR.
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performed using about 80 U.S. Historical Climatology
Network land stations during 1948–96. The monthly av-
erage data are more easily available than the daily data
and thus we have more observations available for com-
parison. We show the fit of CaRD10 to these observa-
tions in January and August in Fig. 6. The monthly
mean 2-m temperature in January correlates very
well—above 0.7 over the entire domain (Fig. 6a). The
correlation tends to be better along the southern coast
of California than inland. The correlation in August is
lower by 0.1 compared to January. In August the cor-
relation tends to be lower along the coast and becomes
better toward inland. The correlation stays above 0.6
over the entire domain. The reason for this geographi-

cal distribution of the CaRD10 temperature skill is not
very clear, but some influence from ocean temperature
is suspected. Our preliminary investigation showed that
the CaRD10 temperature for coastal land in summer
correlates more weakly with coastal SST than observed.
This dominant local response over land in CaRD10
may be responsible for the poorer fit of temperature in
August. This problem may be due to the overestimated
effect of land surface–atmosphere interaction in the
model. For the daily maximum temperature (not
shown) during January, the correlation is mostly over
0.7. The lowest correlation occurs in the Central Valley
area where the value is in the 0.6 range or lower, but
other areas have very high correlations. During August,

FIG. 2. Comparison of daily temperature range for (top) January and (bottom) July 1996 for (left) observation (courtesy of
M. Tyree) and (right) CaRD10.
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the correlation tends to be lower, particularly in the
southern half of the domain.

The correlations of monthly average precipitation
are shown in Fig. 6b. During January, correlation is
fairly high in most of California, while it is lower in
Nevada where less precipitation occurs. During the
summer, correlation is much lower (less than 0.6) over
most of the domain. This is partly due to the lack of
precipitation during this period.

The comparison of area-averaged correlations with
observations is shown in Table 6. We found that only
daily mean and maximum temperatures in January
score better than NNR. This disappointing result seems
to be a sampling problem. As discussed in more detail
in section 4, when precipitation skill is computed using
the gridded observation, we found that there is a con-
siderable small-scale geographical variability in the
temporal correlation (Figs. 10c,d). There are areas of
low skill to the east of the Sierra Nevada in CaRD10,
while the skill of NNR is smoothed out and retains only
the larger scale without areas of low skill. This geo-
graphical distribution resulted in lower area-average

skill for CaRD10 than for NNR. A similar feature is
expected for the near-surface temperature although we
cannot verify this since we do not have an independent
near-surface temperature analysis like PRISM for pre-
cipitation. We believe that the fine geographical struc-
ture of high and low skill is more useful than moderate
skill at coarse resolution. From this point of view, any
comparison of area-average skill between coarse- and
fine-resolution models needs careful interpretation.

The monthly variation of the correlation of daily
mean near-surface temperature at selected coastal
(three stations), valley (six stations), and mountain
(two stations) locations (Table 2b and Fig. 1) is shown
in Fig. 7. The coastal stations display high correlation in
winter months but very poor correlation during the
summer. For the stations in the Central Valley, corre-
lation is high in spring and fall and lower again in sum-
mer, but not as low as the coastal stations. Mountain
station skill is mixed. For the monthly mean precipita-
tion (not shown), the correlation is better in winter over
all stations (correlation of near 0.9) except stations v6
and m2 (correlation near 0.5). It is worse in summer,

FIG. 3. Comparison of monthly mean diurnal variation of near-surface winds for the average of 2000
and 2001 at buoy station b25. Mean daily wind is subtracted and only anomaly is plotted. Solid line is
buoy observation and dashed line is CaRD10. The x axis is time (UTC) and the y axis is wind speed
(m s�1).
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about 0.5 at stations c1, c2, v2, v3, and m1, but lower at
other stations, again reflecting few precipitation events
in summer.

e. Long-term linear trend

For the validation of longer time scales, we examined
the linear trends for the 1950–96 period at several se-

lected stations (see Table 2b and Fig. 1 for the station
locations). The linear trend was computed by the least
squares fit. Table 7 shows the comparison for the Janu-
ary and August trends. In January, the CaRD10 and
observation trends agree fairly well, although the mag-
nitude of the trend in the CaRD10 is consistently
smaller (except mountain station m1). All the trends in
the observation are positive, while CaRD10 shows a
small negative trend in the valley at some stations. The
statistical significance test showed that some of the
positive trends in observation are significant, while
positive trends in CaRD10 do not pass the test with the
exception of station m1. In August, the CaRD10 trend
does not agree with observations at all. Observed
trends are all positive, while the CaRD10 trends are all
negative with the exception of the mountain stations.
More than half of the observed stations pass the statis-
tical test of positive trend while negative trends in
CaRD10 are statistically significant at all stations ex-
cept one. This disagreement of CaRD10 with observa-
tions in summer needs to be examined in detail. Pre-
liminary research suggests several causes. One possible
cause is that the current downscaling does not take into
account changes in land use, irrigation, urbanization, or
changes in green house gases and aerosols. The second
is that the land surface processes affect near-surface
temperature too strongly in the model. Another pos-
sible reason is the effect of poorly analyzed coastal sea
surface temperature with a cooling trend on the long-
term temperature trend over land.

Figure 8 shows the geographical distribution of linear

FIG. 4. Validation of composite diurnal variation of wind speed and direction at Piedras Blancas (35.7°N, 121.3°W) for the period 24
Jun–21 Jul 1996. (left) Observation [from Fig. 9 in Ralph et al. (2000); courtesy of P. Neiman]; y axis is in m. (right) CaRD10; y axis
is in hPa. Contour is wind speed in m s�1. Half barb � 2.5 m s�1 and full barb � 5.0 m s�1.

FIG. 5. An example of the Catalina eddy as it appeared in the
CaRD10 at 1500 UTC 22 May 1984. Shades and arrows indicate
winds (m s�1) at 10 m above surface.
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trends of near-surface temperature in CaRD10 for
January and July. In January, the warm trend is appar-
ent over most of the land region. The positive trend is
greatest over the Sierra Nevada and over northern Cali-
fornia/Oregon. The Central Valley displays a weak or
no trend. During July, most of the area shows a nega-
tive trend with a slight positive trend over the Sierra
Nevada and part of Nevada. There is a strong cooling

trend in the coastal ocean surface temperature, which
seems to have some influence on the negative trend in
the Central Valley. The impact of coastal SST on Cali-
fornia has not been well documented. Further study of
the possible problem of SST used in CaRD10 is war-
ranted. There is strong month-to-month variability in
the linear trend.

As the last demonstration of the validation of dec-

TABLE 6. Correlation of monthly average of daily mean temperature, daily max temperature, and precipitation with observation for
the period 1948–96. All station (Fig. 6) values are averaged. Percentages of number of stations that do not have statistically significant
correlation at the 95% confidence level are in parentheses. Numbers in the right columns are percentages of the number of stations
whose correlations are significantly better than their counterparts at the 95% confidence level.

January August

Daily mean temp Daily max temp Precipitation Daily mean temp Daily max temp Precipitation

CaRD10 0.84 (0%) 38% 0.76 (0%) 43% 0.69 (3%) 4% 0.68 (8%) 3% 0.69 (9%) 5% 0.57 (11%) 9%
NNR 0.78 (0%) 5% 0.65 (9%) 4% 0.77 (0%) 30% 0.74 (6%) 32% 0.73 (8%) 25% 0.64 (6%) 26%

FIG. 6. Correlation of monthly average of (a) daily mean temperature and (b) precipitation
with observation for the period 1948–96.
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adal variability, the seasonal variation of monthly mean
precipitation at 11 coastal, central, and mountain sta-
tions (Table 2b and Fig. 1) is compared between two
periods, 1950–74 and 1975–96. We observed a clear
shift in the CaRD10 maximum precipitation month
from December–January during the 1950–74 period to
January–March during the 1975–96 period (Fig. 9, lines
with circles). Similar shifts were found in the observa-
tions (Fig. 9, thick lines without circles). This shift is
consistent with the trend in earlier streamflow timing
discussed by Stewart et al. (2005). We also performed a

statistical significance test of the time series of differ-
ence between February–March precipitation and De-
cember–January precipitation during the two periods,
1950–74 and 1975–96, and found that 8 stations out of
11 in observation and 9 out of 11 in CaRD10 have a
statistically significant shift in precipitation months be-
tween these periods. Although this is just a simple dem-
onstration, the CaRD10 is capable of reproducing dec-
adal variability in the seasonal variation of precipita-
tion.

4. Comparison with gridded precipitation analyses

The validation of precipitation against station obser-
vation is problematic due to measurement error and the
representativeness of the observation. We try to over-
come this problem by using high-resolution gridded
precipitation analysis. We utilized two products,
PRISM and Higgins analysis. The PRISM (Daly et al.
1994, 2001, 2002) is a method to analyze small-scale
precipitation distribution over complex topography by
combining information such as distance, elevation, clus-
ter, vertical layer, topographic facet, coastal proximity,
and effective terrain. For PRISM, only monthly aver-
age analyses were available, and we used them for vali-
dating the monthly average and long-term trend. Hig-
gins analysis (Higgins et al. 2000) is based on modified
Cressman successive-scan analysis technique and is
available daily on 1/8° grid. We utilized this analysis for

TABLE 7. Comparison of 1950–96 trend in monthly mean near-
surface temperature (K decade�1) between observation and
CaRD10. Statistically significant (95% confidence) positive/
negative trend is indicated in bold.

Station

January August

Obs CaRD10 Obs CaRD10

Coast c1 �0.04 �0.02 �0.04 �0.04
c2 �0.05 �0.02 �0.03 �0.04
c3 �0.07 �0.02 �0.05 �0.03

Valley v1 �0.04 �0.00 �0.00 �0.04
v2 �0.04 �0.00 �0.02 �0.04
v3 �0.01 �0.00 �0.01 �0.03
v4 �0.02 �0.01 �0.05 �0.05
v5 �0.02 �0.00 �0.01 �0.05
v6 �0.02 �0.00 �0.03 �0.05

Mountain m1 �0.04 �0.06 �0.04 �0.00
m2 �0.05 �0.02 �0.06 �0.25

FIG. 7. Variation of correlation of monthly
mean temperature with observation for the pe-
riod 1948–96 at coastal (c1 to c3), Central Val-
ley (v1 to v6), and mountain (m1 and m2) sta-
tions.
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computing threat and bias scores of the daily CaRD10
precipitation.

Figures 10a,b compare the bias of monthly climatol-
ogy (January and August for 1950–97) against the
PRISM analysis for CaRD10 and NNR. It is apparent
that the bias in CaRD10 is large, exceeding 9 mm day�1

in some places. Large positive bias (large negative bias)
is primarily found on the windward side (lee side) of the
Sierra Nevada. It is noted that the NNR bias is much
smaller, but the lack of small-scale detail makes it dif-
ficult to judge the quality of the analysis.

Equitable threat scores (Schaefer 1990) and bias
scores are standard measures of the precipitation skill
of the model. The equitable threat score is defined as

H � C

F � O � H � C
,

where F is the number of grid points that forecast more
than the precipitation threshold; O is the number of
grid points that observe more than the threshold; H is
the number of grid points that correctly forecast more
than the threshold; and C is the expected number of
correct forecasts due to chance (FO/T), where T is the
total number of grid points inside the verification do-
main. The best bias score is 1.0. Scores above (below)
1.0 indicate a wet (dry) bias of precipitation forecast.

Table 8 shows the daily CaRD10 precipitation skill
score during January and August 1998. Higgins gridded
precipitation analysis is used as observation to compute
the threat and bias scores. CaRD10 shows the best
threat score at the threshold of 2 mm day�1. The

CaRD10 bias score is reasonable for smaller precipita-
tion thresholds, but a wet bias is apparent in larger
precipitation thresholds. These scores suggest that
CaRD10 precipitation in January covers reasonable
spatial extent as a whole, but too much precipitation
occurs in the wrong places. August precipitation is
small and CaRD10 shows no skill in the threat score.
Bias scores suggest that CaRD10 is too dry in August.

Figures 10c,d are the temporal correlation of
CaRD10 monthly averaged precipitation against the
PRISM analysis in January, computed for the 1950–97
period. The CaRD10 correlation over the state of Cali-
fornia is generally above 0.7, which agrees with the cor-
relation against station observation shown in Fig. 6. The
correlation is particularly low on the lee side of the
Sierra Nevada. This is likely due to the lack of cloud
water prediction in this version of the model, which
prevents advection of cloud water to the lee side of the
mountains, causing difficulties in reproducing precipi-
tation spreading to the east of high mountain ranges.
The correlation of precipitation in NNR is quite re-
spectable, considering its coarse horizontal resolution.
The summer correlation is much lower (not shown),
because precipitation events are very scarce in this sea-
son.

Finally, the 1950–97 trend in precipitation is com-
pared between PRISM and CaRD10, as shown in Fig.
11. Both patterns agree quite well, with much more
small-scale detail in CaRD10. The tendency of in-
creased precipitation in the south and reduced precipi-
tation along the northern California/Oregon coast

FIG. 8. The 1950–96 linear trend of 2-m temperature (K yr�1) for (left) January and (right) July in CaRD10.
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stands out. The negative tendency along the high Sierra
Nevada is very clear in CaRD10, and some hint of it is
seen in PRISM.

In summary, the comparison with gridded precipita-

tion analysis indicated that the CaRD10 is reasonable
in reproducing daily and year-to-year variation of
monthly mean precipitation, as well as its long-term
trend. However, the absolute amount of precipitation

FIG. 9. Seasonal variation of monthly averaged precipitation (mm day�1) in CaRD10 at 11 selected
observation locations. The 1950–74 climatology and 1975–96 climatology are plotted separately.
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has a positive bias for heavy precipitation regions for a
daily time scale and the windward side of high moun-
tains for a monthly time scale. These conclusions agree
well with the CaRD10 comparison with station obser-
vations.

A recent experiment showed that the overestimation
of precipitation is related to the relaxed Arakawa–
Schubert convective parameterization used in CaRD10.
This parameterization was originally designed for use in
coarser-resolution global models and was shown to per-
form excellently. However, the parameterization tends
to overestimate precipitation in a high-resolution

TABLE 8. Precipitation skill scores of CaRD10 in January 1998
with respect to gridded Higgins precipitation analysis (Higgins et
al. 2000).

Threshold (mm day�1) Threat score Bias score

0.05 0.19 0.96
0.1 0.20 1.04
0.2 0.22 1.09
0.5 0.27 1.13
1 0.30 1.14
2 0.32 1.15
5 0.30 1.27

10 0.24 1.65

FIG. 10. January mean precipitation comparison of CaRD10 and NNR against PRISM analysis for the 1950–97 period. Bias (a) in
CaRD10 and (b) in NNR. Unit: mm day�1. Temporal correlations (c) in CaRD10 and (d) in NNR.
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model. A test run with the Kain–Fritsch convective pa-
rameterization scheme (Kain and Fritsch 1993) with
prediction of cloud water (Zhao and Carr 1997) signifi-
cantly reduced the wet bias over the CaRD10 domain.

5. Conclusions

The dynamical downscaling of NCEP–NCAR global
reanalysis is performed over the state of California and
the neighboring states and ocean. The horizontal reso-
lution of the regional model is 10 km and the output is
produced every hour. The integration period covers 57
years, from 1948 to 2005. The SSBC is applied to reduce
the error of the scale greater than 1000 km.

Comprehensive validation of the downscaled analy-
ses is performed using available buoy observations over
coastal ocean and various land stations. CaRD10 is also
compared with the large-scale boundary forcing (NNR)
to make sure that the regional downscaling does pro-
vide regional-scale information more accurately than
NNR. In addition, comparison is made with the gridded
precipitation analysis to further ensure the quality of
the product. These validations are separately per-
formed for hourly, daily, monthly, and decadal scales.

In general, the quality of the downscaled product is
reasonably high. The product is definitely better than
the coarse-resolution NNR. There is a large difference
in the quality between winter and summer, winter being
better. The winds over the coastal ocean are signifi-
cantly improved by downscaling. Over land, the accu-

racy of CaRD10 near-surface winds and temperature
are good due to the finer topography resolved by the
CaRD10. The examination of typical mesoscale events
(viz., the Catalina eddy, coastally trapped wind rever-
sal, and Santa Ana) showed that the downscaling re-
produces characteristic features very well. There are
some differences in the skill of the CaRD10 for daily
and monthly mean time scales. The monthly mean skill
of temperature is generally higher in January but lower
in August than that of daily mean skill. The long-term
trend of near-surface temperature obtained from 1950
to 1996 agrees fairly well with the station observation in
January, but the trend is underestimated. In August the
trend is negative over a large part of the domain in
CaRD10 while it is positive in the station observation.
This discrepancy is likely the result of the poor repre-
sentation of land process in the model, inaccuracies in
the coastal sea surface temperature, and the use of cli-
matology of land surface characteristics and atmo-
spheric compositions in CaRD10.

The precipitation skill against station observation
showed that the correlation is reasonable, on the order
of 0.6–0.8 on the monthly scale. However, there is a
noticeable positive bias in large precipitation events.
Comparison with gridded analysis revealed that the
CaRD10 daily time-scale precipitation area with more
than 10 mm day�1 can be over 1.5 times larger than that
of the observation. Although the gridded analysis can-
not be fully trusted, particularly over complex terrain, it
is likely that CaRD10 overestimated the precipitation.

FIG. 11. Comparison of the 1950–97 trend in January mean precipitation rate for (a) PRISM and (b) CaRD10. Unit: mm day�1

decade�1.
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The 1950–97 linear trend, however, agrees very well
between CaRD10 and PRISM. These precipitation
validations suggest that although the absolute magni-
tude of the precipitation may be problematic, the long-
term trend, year-to-year variation, and probably day-
to-day variation are reasonably good and can be used
for climate research if we are sufficiently cautious.

The advantage of dynamical downscaling over statis-
tical downscaling is that all variables in the downscaled
analysis are dynamically, physically, and hydrologically
consistent, at least within the framework of the down-
scaling system. Thus, the downscaled analysis provides
ways to study various regional phenomena of widely
ranging time scales in a consistent manner. However, it
is important to understand the limitations of down-
scaled analysis before it is used for those studies.

Part II of this paper describes an in-depth compari-
son of CaRD10 against NARR. The CaRD10 dataset is
currently available in-house at the Scripps Institution of
Oceanography and web access to the entire dataset is
available to the general public (see http://cec.sdsc.edu).
The data can also be obtained by writing to the authors.
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